[55] B. Lorbetskie et al., “Optimization and qualification of a quantitative reversed-phase
HPLC method for hemagglutinin in influenza preparations and its comparative
evaluation with biochemical assays,” Vaccine, vol. 29, no. 18, pp. 3377–3389, Apr.
2011.
[56] J. Transfiguracion, A. P. Manceur, E. Petiot, C. M. Thompson, and A. A. Kamen,
“Particle quantification of influenza viruses by high performance liquid chromato-
graphy,” Vaccine, vol. 33, no. 1, pp. 78–84, Jan. 2015.
[57] B. Kalbfuss, A. Knochlein, T. Krober, and U. Reichl, “Monitoring influenza virus
content in vaccine production: precise assays for the quantitation of hemaggluti-
nation and neuraminidase activity,” Biologicals, vol. 36, no. 3, pp. 145–161, May
2008.
[58] D. D. LaBarre and R. J. Lowy, “Improvements in methods for calculating virus titer
estimates from TCID50 and plaque assays,” J. Virol. Methods, vol. 96, no. 2,
pp. 107–126, 2001.
[59] S. L. Schwartz and A. C. Lowen, “Droplet digital PCR: A novel method for de-
tection of influenza virus defective interfering particles,” J. Virol. Methods, vol.
237, pp. 159–165, Nov. 2016.
[60] A. J. Veach, C. Beard, F. Porter, M. Wilson, and F. B. Scorza, “Digital droplet PCR
for influenza vaccine development,” Procedia Vaccinol., vol. 9, pp. 96–103, 2015.
[61] C. F. Mandenius et al., “Monitoring of influenza virus hemagglutinin in process
samples using weak affinity ligands and surface plasmon resonance,” Anal. Chim.
Acta, vol. 623, no. 1, pp. 66–75, Aug. 2008.
[62] C. E. Nilsson, S. Abbas, M. Bennemo, A. Larsson, M. D. Hamalainen, and
A. Frostell-Karlsson, “A novel assay for influenza virus quantification using surface
plasmon resonance,” Vaccine, vol. 28, no. 3, pp. 759–766, Jan. 2010.
[63] S. Khurana, L. R. King, J. Manischewitz, E. M. Coyle, and H. Golding, “Novel
antibody-independent receptor-binding SPR-based assay for rapid measurement of
influenza vaccine potency,” Vaccine, vol. 32, no. 19, pp. 2188–2197, Apr. 2014.
[64] L. Durous et al., “SPRi-based hemagglutinin quantitative assay for influenza vac-
cine production monitoring,” Vaccine, vol. 37, no. 12, pp. 1614–1621, Mar. 2019.
[65] S. B. Carvalho, C. Peixoto, M. J. T. Carrondo, and R. J. S. Silva, “Downstream
processing for influenza vaccines and candidates: An update,” Biotechnol Bioeng,
vol. 118, no. 8, pp. 2845–2869, Aug. 2021.
[66] I. Manini et al., “Flucelvax (Optaflu) for seasonal influenza,” Expert Rev. Vacc., vol.
14, no. 6, pp. 789–804, Jun. 2015.
[67] European Medicines Agency, “Flucelvax Tetra: EPAR – Public assessment report,”
2018, Available: https://www.ema.europa.eu/en/medicines/human/EPAR/flucelvax-
tetra
[68] K. Wang, K. M. Holtz, K. Anderson, R. Chubet, W. Mahmoud, and M. M. Cox,
“Expression and purification of an influenza hemagglutinin--one step closer to a re-
combinant protein-based influenza vaccine,” Vaccine, vol. 24, no. 12, pp. 2176–2185,
Mar. 2006.
Manufacturing of influenza vaccines
237